MAX78002GXE+

Analog Devices / Maxim Integrated
700-MAX78002GXE+
MAX78002GXE+

Mfr.:

Description:
ARM Microcontrollers - MCU ARM M4F w/ 2MB Weight CNN Accelerator, C

ECAD Model:
Download the free Library Loader to convert this file for your ECAD Tool. Learn more about the ECAD Model.

In Stock: 101

Stock:
101 Can Dispatch Immediately
Factory Lead Time:
10 Weeks Estimated factory production time for quantities greater than shown.
Quantities greater than 101 will be subject to minimum order requirements.
Minimum: 1   Multiples: 1
Unit Price:
-,-- kr.
Ext. Price:
-,-- kr.
Est. Tariff:
This Product Ships FREE

Pricing (DKK)

Qty. Unit Price
Ext. Price
532,49 kr. 532,49 kr.
442,53 kr. 4.425,30 kr.
421,27 kr. 10.531,75 kr.
395,60 kr. 39.560,00 kr.
383,74 kr. 72.526,86 kr.

Product Attribute Attribute Value Select Attribute
Analog Devices Inc.
Product Category: ARM Microcontrollers - MCU
RoHS:  
SMD/SMT
CSBGA-144
ARM Cortex M4F
2.5 MB
32 bit
120 MHz
60 I/O
384 kB
2.85 V
3.6 V
- 40 C
+ 105 C
Tray
Analogue Supply Voltage: 1.71 V to 1.89 V
Brand: Analog Devices / Maxim Integrated
Data RAM Type: SRAM
Data ROM Size: 64 kB
Data ROM Type: ROM
Interface Type: I2S, SDIO
Number of Timers/Counters: 3 Timer
Operating Supply Voltage: 2.85 V to 3.6 V
Processor Series: MAX78002
Product: MCUs
Product Type: ARM Microcontrollers - MCU
Program Memory Type: Flash
Factory Pack Quantity: 189
Subcategory: Microcontrollers - MCU
Watchdog Timers: Watchdog Timer
Products found:
To show similar products, select at least one checkbox
Select at least one checkbox above to show similar products in this category.
Attributes selected: 0

This functionality requires JavaScript to be enabled.

TARIC:
8542319000
CAHTS:
8542310000
USHTS:
8542310025
ECCN:
5A992.C

MAX78002 Artificial Intelligence Microcontrollers

Analog Devices MAX78002 Artificial Intelligence Microcontrollers are AI microcontrollers that enable neural networks. The Analog Devices MAX78002 can execute at ultra-low power and live at the edge of the IoT. The devices combine energy-efficient AI processing with ultra-low-power microcontrollers. This hardware-based CNN accelerator enables battery-powered applications to execute AI inferences while expending only millijoules of energy.